Literatur Reviu Sistematis: Identifikasi Jenis Ular Berbasis Computer Vision
Isi Artikel Utama
Abstrak
Systematic Literature Review ini bertujuan untuk mengidentifikasi algoritma-algoritma yang digunakan dalam identifikasi spesies ular yang menggunakan computer vision, mengevaluasi dataset, tingkat akurasi, faktor-faktor yang memengaruhi akurasi, dan keterbatasan yang dihadapi. Melalui tinjauan literatur sistematis, 20 paper terpilih dari tahun 2019-2023, yang didapat dari berbagai sumber literatur. Penelitian-penelitian tersebut mengeksplorasi berbagai strategi untuk mengatasi tantangan pengenalan objek ular secara otomatis, termasuk peningkatan kinerja model, eksplorasi pendekatan baru, dan penerapan solusi efektif. Hasil dari studi literatur menyoroti pentingnya pemrosesan data yang cermat, pemilihan arsitektur model yang tepat, serta penyesuaian parameter algoritma yang optimal dalam mencapai kinerja maksimal pada model-model yang dikembangkan. Beberapa peneliti juga mengemukakan keterbatasan dalam penelitiannya, seperti kualitas dan jumlah dataset, kompleksitas morfologi ular, dan variasi pose ular. Diperlukan kerja sama lintas disiplin dan berbagi pengetahuan untuk mengatasi tantangan ini dan memajukan bidang identifikasi spesies ular melalui computer vision.
##plugins.themes.bootstrap3.displayStats.downloads##
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis, dan penulis mengakui bahwa Jnanaloka sebagai pihak yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution (CC BY). Lisensi ini mengijinkan untuk, Berbagi yakni menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun; dan Adaptasi yakni menggubah, mengubah, dan membuat turunan dari materi iniuntuk kepentingan apapun, termasuk kepentingan komersial dengan ketentuan Atribusi
Cara Mengutip
Referensi
D. A. Warrell, Guidelines for the management of snake-bites. Geneva: World Health Organization.
I. Bolon, A. M. Durso, S. Botero Mesa, N. Ray, G. Alcoba, F. Chappuis, and R. Ruiz de Castañeda, “Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world,” PLoS one, vol. 15, no. 3, p. e0229989, 2020.
M. Rajabizadeh and M. Rezghi, “A comparative study on image-based snake identification using machine learning,” Scientific reports, vol. 11, no. 1, p. 19142, 2021.
S. E. Henke, S. S. Kahl, D. B. Wester, G. Perry, and D. Britton, “Efficacy of an online native snake identification search engine for public use,” Human–Wildlife Interactions, vol. 13, no. 2, p. 14, 2019.
G. Stockman and L. G. Shapiro, Computer vision. Prentice Hall PTR, 2001.
A. M. Durso, G. K. Moorthy, S. P. Mohanty, I. Bolon, M. Salathé, and R. Ruiz de Castañeda, “Supervised learning computer vision benchmark for snake species identification from photographs: Implications for herpetology and global health, Frontiers in artificial intelligence, vol. 4, p. 582110, 2021.
P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from applying the systematic literature review process within the software engineering domain,” Journal of systems and software, vol. 80, no. 4, pp. 571–583, 2007.
K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” Journal of the royal society of medicine, vol. 96, no. 3, pp. 118–121, 2003.
N. I. Progga, N. Rezoana, M. S. Hossain, R. U. Islam, and K. Andersson, “A cnn based model for venomous and non-venomous snake classification,” in Applied Intelligence and Informatics: First International Conference, AII 2021, Nottingham, UK, July 30–31, 2021, Proceedings 1. Springer, 2021, pp. 216–231.
A. Patel, L. Cheung, N. Khatod, I. Matijosaitiene, A. Arteaga, and J. W. Gilkey Jr, “Revealing the unknown: Real-time recognition of galápagos snake species using deep learning,” Animals, vol. 10, no. 5, p. 806, 2020.
I. Bolon, L. Picek, A. M. Durso, G. Alcoba, F. Chappuis, and R. Ruiz de Castañeda, “An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology,” PLoS neglected tropical diseases, vol. 16, no. 8, p. e0010647, 2022.
L. Bloch, A. Boketta, C. Keibel, E. Mense, A. Michailutschenko, O. Pelka, J. Rückert, L. Willemeit, and C. M. Friedrich, “Combination of image and location information for snake species identification using object detection and efficientnets.” in CLEF (Working Notes), 2020.
L. Bloch and C. M. Friedrich, “Efficientnets and vision transformers for snake species identification using image and location information.” in CLEF (Working Notes), 2021, pp. 1477–1498.
Z. Yang and R. Sinnott, “Snake detection and classification using deep learning.” in Proceedings of the 54th Hawaii International Conference on System Sciences), 2021.
B. Bracke, M. Bagherifar, L. Bloch, and C. M. Friedrich, “Joint feature learning of image data with embedded metadata to leverage snake species classification,” 2023.
R. Borsodi and D. Papp, “Incorporation of object detection models and location data into snake species classification.” in CLEF (Working Notes), 2021, pp. 1499–1511.
J. Yu, H. Chang, Z. Cai, G. Xie, L. Zhang, K. Lu, S. Du, Z. Wei, Z. Liu, F. Gao et al., “Efficient model integration for snake classification.” in CLEF (Working Notes), 2022, pp. 2262–2274.
R. Chamidullin, M. Šulc, J. Matas, and L. Picek, “A deep learning method for visual recognition of snake species,” 2021.
L. Kalinathan, P. Balasundaram, P. Ganesh, S. S. Bathala, and R. K. Mukesh, “Automatic snake classification using deep learning algorithm.” in CLEF (Working Notes), 2021, pp. 1587–1596.
L. G. Coca, A. T. Popa, R. C. Croitoru, L. P. Bejan, and A. Iftene, “Uaic-ai at snakeclef 2021: Impact of convolutions in snake species recognition.” in CLEF (Working Notes), 2021, pp. 1540–1546.
A. Balana, “Metric weighted ensemble focal loss for snake species identification,” 2023. I. S. Abdurrazaq, S. Suyanto, and D. Q. Utama, “Image-based classification of snake species using convolutional neural network,” in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2019, pp. 97–102.
M. Vasmatkar, I. Zare, P. Kumbla, S. Pimpalkar, and A. Sharma, “Snake species identification and recognition,” in 2020 IEEE Bombay Section Signature Conference (IBSSC). IEEE, 2020, pp. 1–5.
M. Palaniappan, K. Desingu, H. Bharathi, E. A. Chodisetty, and A. Bhaskar, “Deep learning and gradient boosting ensembles for classification of snake species,” in CEUR Work- shop Procding, vol. 3180, 2022, pp. 2175–88.
C. Abeysinghe, A. Welivita, and I. Perera, “Snake image classification using siamese networks,” in Proceedings of the 3rd International Conference on Graphics and Signal Pro- cessing, 2019, pp. 8–12.
M. G. Krishnan, “Impact of pretrained networks for snake species classification.” in CLEF (Working Notes), 2020.