Penerapan model InceptionV3 dalam klasifikasi penyakit ayam
Isi Artikel Utama
Abstrak
Penyakit ayam merupakan salah satu permasalahan yang dapat memberikan dampak yang sangat signifikan bagi para peternak ayam, selain memberikan dampak bagi peternakan itu sendiri, penyakit ayam juga dapat memberikan dampak bagi lingkungan sekitar. Kurangnya pengetahuan terhadap gejala mauppun penyakit yang terjadi pada ayam, membuat sebagian dari peternak ayam mengobati dan mengatasi penyakit dengan cara yang masih tradisional. Cara tersebut seringkali memakan waktu yang lama dan rawan terhadap kesalahan. Pada penelitian ini akan menggunakan teknologi untuk melakukan proses klasifikasi terhadap penyakit ayam dengan memanfaatkan model deep learning dari arsitektur Convolutional Neural Netwok (CNN), yaitu InceptionV3. Dalam melakukan proses klasifikasi penyakit ayam, menggunakan dataset citra feses ayam dengan jumlah 8067 Sehat, Salmonella, Coccidiosis, dan penyakit Newcastle. Pada proses penelitian dilakukan tiga skenario percobaan dengan menggunakan 20 epoch, 50 epoch dan 100 epoch. Dari hasil percobaan, penggunaan nilai 100 epoch menghasilkan nilai akurasi paling tinggi dengan nilai 94.05%.
##plugins.themes.bootstrap3.displayStats.downloads##
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis, dan penulis mengakui bahwa Jnanaloka sebagai pihak yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution (CC BY). Lisensi ini mengijinkan untuk, Berbagi yakni menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun; dan Adaptasi yakni menggubah, mengubah, dan membuat turunan dari materi iniuntuk kepentingan apapun, termasuk kepentingan komersial dengan ketentuan Atribusi
Cara Mengutip
Referensi
H. Ritchie, P. Rosado, and M. Roser, “Meat and Dairy Production,” Our World in Data, 2017.
M. Herrero et al., “Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions,” in Science and Innovations for Food Systems Transformation, J. von Braun, K. Afsana, L. O. Fresco, and M. H. A. Hassan, Eds., Cham: Springer International Publishing, 2023, pp. 375–399. doi: 10.1007/978-3-031-15703-5_20.
A.-J. A. Mohammed Ahmed and A.-Q. M. Ahmed Abdulaziz, “Analysis of Operations of Poultry Farm Using IoT Technology,” in 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM), 2021, pp. 336–339. doi: 10.1109/BDEIM55082.2021.00074.
A. Setiadi, S. I. Santoso, S. Nurfadillah, K. Prayoga, and E. Prasetyo, “Production and Marketing System of Kampong Chicken in Batang Regency, Central Java, Indonesia,” Caraka Tani: Journal of Sustainable Agriculture, vol. 35, no. 2, p. 326, Sep. 2020, doi: 10.20961/carakatani.v35i2.40907.
H. M. Hafez and Y. A. Attia, “Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak,” Front Vet Sci, vol. 7, 2020, doi: 10.3389/fvets.2020.00516.
F. S. Nuvey et al., “Access to vaccination services for priority ruminant livestock diseases in Ghana: Barriers and determinants of service utilization by farmers,” Prev Vet Med, vol. 215, p. 105919, 2023, doi: https://doi.org/10.1016/j.prevetmed.2023.105919.
A. B. Ekiri et al., “Evaluating Disease Threats to Sustainable Poultry Production in Africa: Newcastle Disease, Infectious Bursal Disease, and Avian Infectious Bronchitis in Commercial Poultry Flocks in Kano and Oyo States, Nigeria,” Front Vet Sci, vol. 8, 2021, doi: 10.3389/fvets.2021.730159.
T. Van Limbergen et al., “Risk factors for poor health and performance in European broiler production systems,” BMC Vet Res, vol. 16, no. 1, p. 287, 2020, doi: 10.1186/s12917-020-02484-3.
Y. Asfaw, G. Ameni, G. Medhin, G. Alemayehu, and B. Wieland, “Infectious and parasitic diseases of poultry in Ethiopia: a systematic review and meta-analysis,” Poult Sci, vol. 98, no. 12, 2019, doi: 10.3382/ps/pez521.
A. Zegeye, W. Temesgen, W. Molla, H. Setotaw, and M. Lakew, “Epidemiology of Newcastle disease in chickens of Ethiopia: a systematic review and meta-analysis,” Trop Anim Health Prod, vol. 54, no. 5, p. 328, 2022, doi: 10.1007/s11250-022-03330-4.
P. He et al., “Research Progress in the Early Warning of Chicken Diseases by Monitoring Clinical Symptoms,” Applied Sciences, vol. 12, no. 11, 2022, doi: 10.3390/app12115601.
L. Liu et al., “Deep Learning for Generic Object Detection: A Survey,” Int J Comput Vis, vol. 128, no. 2, pp. 261–318, 2020, doi: 10.1007/s11263-019-01247-4.
L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, pp. 128837–128868, 2019, doi: 10.1109/ACCESS.2019.2939201.
R. Primartha, Algoritma Machine Learning. Bandung: INFORMATIKA, 2021.
J. Astill, R. A. Dara, E. D. G. Fraser, and S. Sharif, “Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus,” Front Vet Sci, vol. 5, 2018, doi: 10.3389/fvets.2018.00263.
W. Li et al., “Chicken Image Segmentation via Multi-Scale Attention-Based Deep Convolutional Neural Network,” IEEE Access, vol. 9, pp. 61398–61407, 2021, doi: 10.1109/ACCESS.2021.3074297.
X. Zhuang and T. Zhang, “Detection of sick broilers by digital image processing and deep learning,” Biosyst Eng, vol. 179, pp. 106–116, 2019, doi: https://doi.org/10.1016/j.biosystemseng.2019.01.003.
J. Wang, M. Shen, L. Liu, Y. Xu, and C. Okinda, “Recognition and Classification of Broiler Droppings Based on Deep Convolutional Neural Network,” J Sens, vol. 2019, p. 3823515, 2019, doi: 10.1155/2019/3823515.
D. Machuve, E. Nwankwo, E. Lyimo, E. Maguo, and C. Munisi, “Machine Learning Dataset for Poultry Diseases Diagnostics - PCR annotated.” Zenodo, Dec. 2021. doi: 10.5281/zenodo.5801834.
C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front Energy Res, vol. 9, 2021, doi: 10.3389/fenrg.2021.652801.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.