Analisa gambar citra MRI otak dengan watershed dan ekstraksi fitur GLCM

Isi Artikel Utama

Astika Wulansari
Aulia Tegar Rahman

Abstrak

Tumor otak merupakan infeksi berupa jaringan yang tidak diinginkan dan sangat membahayakan. Sangat sulit untuk membedakan jaringan tumor otak dari bagian otak lainnya. Deteksi dini tumor sangat penting untuk menyelamatkan nyawa pasien. Strategi segmentasi dapat digunakan untuk mengidentifikasi dan mengurai area tumor otak dengan citra Magnetic Resonance Imaging (MRI) otak. Hal ini merupakan terobosan yang penting untuk masa depan. Pencitraan resonansi magnetik merupakan bidang yang ekstrem dalam image processing karena tingkat presisi harus sangat tinggi sehingga dokter dapat memperoleh rekomendasi yang tepat tentang infeksi untuk menyelamatkan nyawa pasien. Citra MRI dapat digunakan untuk memberikan informasi pemisahan jaringan tumor otak. Segmentasi dari citra MRI dengan median filtering dan teknik preprocessing pengupasan tengkorak, threshold grip dengan watershed memperoleh hasil contrast 4,287, correlation 0,946, homogeneity 0,721, dan energy 0,278.

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

Rincian Artikel

Cara Mengutip
“Analisa Gambar Citra MRI Otak Dengan Watershed Dan Ekstraksi Fitur GLCM”. 2022. JNANALOKA 3 (2): 39-46. https://doi.org/10.36802/jnanaloka.2022.v3-no2-39-46.
Bagian
Articles

Cara Mengutip

“Analisa Gambar Citra MRI Otak Dengan Watershed Dan Ekstraksi Fitur GLCM”. 2022. JNANALOKA 3 (2): 39-46. https://doi.org/10.36802/jnanaloka.2022.v3-no2-39-46.

Referensi

M. U. Khan, H. Khan, A. Arshad, N. K. Baloch, A. Shaheen, and F. Tariq, “Brain tumor detection based on magnetic resonance imaging analysis using segmentation, thresholding and morphological operations,” in 2021 6th International Multi-Topic ICT Conference. (IMTIC), 2021, doi: 10.1109/IMTIC53841.2021.9719773. pp. 1–6.

A. Wulandari, R. Sigit, and M. M. Bachtiar, “Brain tumor segmentation to ca- lculate percentage tumor using mri,” in 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). IEEE, 2018, doi: 10.1109/KCIC.2018.8628591. pp. 292–296.

M. Brummer, R. Mersereau, R. Eisner, and R. Lewine, “Automatic detection of brain contours in mri data sets,” IEEE Transactions on Medical Imaging, vol. 12, no. 2, pp. 153–166, 1993.

A. Hussain and A. Khunteta, “Semantic segmentation of brain tumor from mri images and svm classification using glcm features,” in 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2020, doi: 10.1109/ICIRCA48905.2020.9183385. pp. 38–43.

B. Radhakrishnan, L. P. Suresh et al., “Tumor region extraction using edge detection method in brain mri images,” in 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2017, doi: 10.1109/ICCPCT.2017.8074326. pp. 1–5.

R. Vinoth and C. Venkatesh, “Segmentation and detection of tumor in mri images using cnn and svm classification,” in 2018 Conference on Emerging Devices and Smart Systems (ICEDSS). IEEE, 2018, doi: 10.1109/ICEDSS.2018.8544306. pp. 21–25.

T. S. Kumar, K. Rashmi, S. Ramadoss, L. Sandhya, and T. Sangeetha, “Brain tumor detection using svm classifier,” in 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). IEEE, 2017, doi: 10.1109/SSPS.2017.8071613. pp. 318–323.

B. Arora, N. Bhagat, L. Saritha, and S. Arcot, “Rice grain classification using image processing & machine learning techniques,” in 2020 International Conference on Inventive ComputationTechnologies(ICICT). IEEE,2020,doi:10.1109/ICICT48043.2020.9112418. pp. 205–208.

S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, “A survey of mri-based medical image analysis for brain tumor studies,” Physics in Medicine & Biology, vol. 58, no. 13, p. R97, 2013.

J. Zhang, Z. Jiang, J. Dong, Y. Hou, and B. Liu, “Attention gate resu-net for automatic mri brain tumor segmentation,” IEEE Access, vol. 8, pp. 58 533–58 545, 2020.

C. Ouchicha, O. Ammor, and M. Meknassi, “Unsupervised brain tumor segmenta- tion from magnetic resonance images,” in 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). IEEE, 2019, doi: 10.1109/WINCOM47513.2019.8942589. pp. 1–5.